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Across species, taste provides important chemical information about potential 
food sources and the surrounding environment. As details about the chemicals 
and receptors responsible for gustation are discovered, a complex view of the 
taste system is emerging with significant contributions from research using the 
fruit fly, Drosophila melanogaster, as a model organism. In this brief review, 
we summarize recent advances in Drosophila gustation and their relevance to 
taste research more broadly. Our goal is to highlight the molecular mechanisms 
underlying the first step of gustatory circuits: ligand-receptor interactions in 
primary taste cells. After an introduction to the Drosophila taste system and how 
it encodes the canonical taste modalities sweet, bitter, and salty, we describe 
recent insights into the complex nature of carboxylic acid and amino acid 
detection in the context of sour and umami taste, respectively. Our analysis 
extends to non-canonical taste modalities including metals, fatty acids, and 
bacterial components, and highlights unexpected receptors and signaling 
pathways that have recently been identified in Drosophila taste cells. Comparing 
the intricate molecular and cellular underpinnings of how ligands are detected 
in vivo in fruit flies reveals both specific and promiscuous receptor selectivity 
for taste encoding. Throughout this review, we  compare and contextualize 
these Drosophila findings with mammalian research to not only emphasize the 
conservation of these chemosensory systems, but to demonstrate the power of 
this model organism in elucidating the neurobiology of taste and feeding.
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Introduction

The chemical sense of taste allows animals to evaluate their food options to encourage the 
consumption of beneficial nutrients and avoidance of potential toxins. Since gustation links the 
environment to nutrition and fitness, it is not surprising that this sense is well-conserved across 
a wide range of animals, from humans to fruit flies (1). The concept that certain chemicals elicit 
distinct taste perceptions can be traced back to the earliest philosophers, but a clear understanding 
of the molecular and cellular basis of taste only started to emerge in the early 2000s. Over the last 
two decades, there has been extensive research into identifying the receptors responsible for the 
“five basic tastes”: sweet, bitter, salty, sour, and umami (2). Many details of these canonical taste 
modalities are well-established in both mammalian and non-mammalian model organisms, 
including the fruit fly, Drosophila melanogaster (1, 3–5). Drosophila is a powerful model organism 
in neurobiology research that has continued to advance our understanding of gustation due to 
the ability to record taste cell activity in vivo from a single neuron or a complete set of specific 
taste cells (6–8). Readily available genetic tools also allow for investigation into the role of taste 

OPEN ACCESS

EDITED BY

Gabriella Morini,  
University of Gastronomic Sciences, Italy

REVIEWED BY

Wenli Tian,  
Chinese Academy of Agricultural Sciences, 
China

*CORRESPONDENCE

Molly Stanley  
 molly.stanley@uvm.edu

†These authors share first authorship

RECEIVED 01 March 2024
ACCEPTED 02 April 2024
PUBLISHED 11 April 2024

CITATION

Arntsen C, Guillemin J, Audette K and 
Stanley M (2024) Tastant-receptor 
interactions: insights from the fruit fly.
Front. Nutr. 11:1394697.
doi: 10.3389/fnut.2024.1394697

COPYRIGHT

© 2024 Arntsen, Guillemin, Audette and 
Stanley. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Mini Review
PUBLISHED 11 April 2024
DOI 10.3389/fnut.2024.1394697

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2024.1394697&domain=pdf&date_stamp=2024-04-11
https://www.frontiersin.org/articles/10.3389/fnut.2024.1394697/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1394697/full
mailto:molly.stanley@uvm.edu
https://doi.org/10.3389/fnut.2024.1394697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2024.1394697


Arntsen et al. 10.3389/fnut.2024.1394697

Frontiers in Nutrition 02 frontiersin.org

receptors in cellular physiology and chemosensory behaviors (9–11). 
This review introduces the Drosophila taste system and describes recent 
insights into novel tastant-receptor interactions for both canonical and 
non-canonical taste modalities with comparisons to 
mammalian gustation.

The fruit fly taste system

In both mammals and Drosophila, primary chemosensory cells 
initiate taste sensation by evaluating a food source’s chemical 
properties. The mammalian gustatory system uses taste receptor cells 
(TRCs), modified epithelial cells found in taste buds throughout the 
oral cavity. TRCs detect chemicals and relay this information to 
afferent gustatory nerves (1), but the Drosophila peripheral nervous 
system directly detects tastants via gustatory receptor neurons (GRNs) 
(12). GRNs are distributed throughout the fly body, but the highest 
concentration of taste cells involved in feeding is located in the 
labellum, the Drosophila tongue homolog (5). Labellar GRNs express 
taste receptors that allow for the rapid identification of chemicals, 
promoting selectivity for compounds that represent specific taste 
modalities (13, 14), akin to lingual taste cells in mammals.

GRNs in the fruit fly labellum have been categorized into five 
groups based on their distinct receptor profiles and taste modality 
responsiveness: “sweet,” “bitter,” “water,” “salty,” and “IR94e” (15). 
These five GRN classes can be consistently mapped on a fly’s labellum 
across ~62 gustatory sensilla that are classified by size, each containing 
two or four GRNs (10, 16, 17) (Figure 1A). GRN axons project to the 
sub-esophageal zone in the brain (17, 18), where arborizations of both 
GRNs and motor neurons generate local circuits for taste-induced 
behavioral responses (19). The Drosophila whole-brain connectome 
(20–23) allows neural circuits to be  traced from tastant-receptor 
activation through behavioral output to enhance our understanding 
of how taste information is encoded and modulated (24–28).

Gustatory processing commonly starts with two main classes of 
taste receptors in Drosophila: gustatory receptors (GRs) and ionotropic 
receptors (IRs). GRs consist of seven transmembrane domains, an 
intracellular N-terminus, and an extracellular C-terminus (29–32). 
Earlier studies that disrupted G-protein subunits in GR-expressing cells 
found a reduction in taste responses (33, 34), but recent research 
elucidating the structure of two sugar GRs has determined that they 
form tetrameric ligand-gated cation channels with peripheral ligand 
binding sites and a single central pore (35). The other class of Drosophila 
taste receptors, IRs, share structural similarities with synaptic, 
glutamate-gated ion channels: 3 transmembrane domains and a 2-lobed 
extracellular binding domain (36–38). IRs form heteromeric receptor 
complexes comprised of both co-receptors and “tuning” receptors that 
function as ligand-gated ion channels (39). In contrast to IRs and GRs, 
mammalian T1Rs and T2Rs are G-protein coupled receptors (GPCRs) 
(40–42), yet the repertoire of tastants acting via these receptors and their 
impact on behavior is remarkably conserved (1).

Sweet, bitter, and salty taste

Direct activation of Drosophila “sweet” GRNs leads to appetitive 
feeding behaviors whereas “bitter” GRN activation produces 
avoidance (15, 19, 43), consistent with mammalian studies on these 

canonical tastes (1, 44, 45). Drosophila sugar receptors formed from 9 
GR genes (sugar GRs) (46–51) detect mono- and disaccharides along 
with artificial sweeteners and molecules perceived as sweet to humans 
(52–54). The remaining 30+ GR genes form receptors in “bitter” 
GRNs (bitter GRs), detecting a range of bitter compounds (e.g., 
caffeine, lobeline, denatonium, and quinine) (55–58). Recent work in 
Drosophila has identified two non-canonical bitter signaling pathways 
for the detection of specific ligands, using rhodopsins and a 
peptidoglycan recognition protein (PGRP), that open new avenues for 
taste transduction (Table  1; Figure  1B). Rhodopsin GPCRs are 
typically light-sensitive with an opsin protein and retinal 
chromophore, but three rhodopsins (Rh1, Rh4, and Rh7) were found 
to function as taste receptors that do not require light or retinal (59). 
These rhodopsins detect aristolochic acid and activate “bitter” GRNs 
at particularly low concentrations through a phospholipase C (PLC) 
signaling cascade that involves TRPA1 (59). Mouse taste buds express 
some opsin RNA (75), suggesting these channels may have a conserved 
role in chemosensation. The other non-canonical pathway involves 
PGRPs, pattern recognition receptors traditionally involved in the 
immune response to pathogens. TRPA1 and canonical bitter GRs 
(Gr33a, Gr66a) were previously implicated in the detection of bacterial 
components (76, 77), but the newly described PGRP (PGRP-LB) 
expressed in the labellum specifically detects bacterial peptidoglycans. 
Unexpectedly, this receptor uses nuclear factor-κB (NF-κB)/immune 
deficiency (IMD)-dependent signaling to activate “bitter” GRNs (60). 
An interest in the role of oral taste receptors in microbial detection has 
emerged in mammalian research (78, 79), and this recent work in fruit 
flies highlights an unexpected role for NF-κB/IMD signaling in taste 
cells that impacts feeding choices (60).

Recent advances in salt taste have revealed a complex taste 
transduction system that allows for concentration-dependent salt 
feeding in both mammals and fruit flies (80). A set of “high salt” or 
“salty” GRNs in the Drosophila labellum are specifically activated by 
high concentrations of various salt ions (15, 81, 82). Salt also activates 
other GRNs (“sweet,” “bitter,” and “IR94e”) while inhibiting “water” 
GRNs, producing a combinatorial code that can lead to flexible 
behaviors (15). Salt taste research highlights the role of IRs that use 
the broadly expressed co-receptors, IR25a and IR76b, plus a narrowly 
expressed “tuning” IR to form functional receptors that detect specific 
salt ions (15, 82–84). Canonical salt taste centers around NaCl and 
occasionally other mono- or divalent ions (80), but recent research has 
shifted focus to identify the taste mechanisms for other ions.

Metal taste

Metals, including divalent and trivalent salt ions, have complex 
taste profiles (85–87) that have garnered increasing attention due to 
their accumulation in soil, crops, and foods from human activities (88, 
89). Recent studies established that the human bitter taste receptor 
TAS2R7 acts as a metal cation receptor for detecting zinc and copper 
(90), yet this can only be  demonstrated in vitro. Fruit flies avoid 
consuming metals and in vivo quantifications of neuronal activity 
reveal that metal ions activate taste cells through multiple receptors 
(Table 1; Figure 1B).

In Drosophila, some metal ions require only bitter GRs (Cu2+, Ag+) 
or IRs (Mn2+, Ni2+, Cd2+) for detection, while others require both (Zn2+, 
Co2+). Interestingly, cellular responses to iron involve both receptor 
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types or solely IRs depending if it is in the Fe2+ or Fe3+ form, respectively 
(61). Cadmium sensitivity requires an IR complex in two types of 
GRNS: co-receptors (IR25a, IR76b) plus IR7a in “bitter” GRNs and the 
same co-receptors plus IR47a in “salty” GRNs (63). A recent brief report 
found an additional “tuning” receptor, IR56b, to be necessary for zinc 
avoidance (62), however, this receptor complex detects NaCl in “sweet” 
GRNs for attraction (83), so this is an unexpected result. Overall, this 
research in flies provides clear evidence that a range of individual metal 
ions have specific taste detection mechanisms. As metal contamination 
continues to rise, understanding gustatory pathways for metal ligands 
will become increasingly important across animals with relevance to 
environmental health and food safety.

Sour taste

pH is an important indicator of food quality and sour taste 
describes the gustatory detection of acids. Recently, the Otop1 proton 

channel was identified as the “sour receptor” in mammals (91, 92), and 
a homolog, OtopLa, is expressed in fruit fly GRNs in the labellum (93, 
94). While the discovery of Otop channels was an important 
breakthrough for sour taste, different acids have distinct taste qualities 
even at the same pH, suggesting there is more to sour taste than pH 
alone (95, 96).

Like humans, fruit flies show dose-dependent attraction or 
aversion to certain carboxylic acids (67). Weak organic acids, such as 
acetic acid, may have the ability to cross the membrane of taste cells 
to impact transduction by altering intracellular pH, but through 
unknown mechanisms (97, 98). In Drosophila, attractive 
concentrations of specific organic acids—acetic, lactic, glycolic, and 
citric—require taste receptors for the activation of “sweet” GRNs 
(64–66). At least one broadly expressed co-receptor, IR25a, is involved, 
along with sugar GRs for detecting organic acids (64–66) (Table 1; 
Figure 1B). Even at the same pH, these acids differentially activate 
Drosophila taste cells in vivo, indicating diverse receptor binding and/
or abilities to cross cell membranes. Attempts to distinguish between 

FIGURE 1

Neural encoding of novel tastant-receptor interactions in Drosophila. (A) Fruit flies will explore their chemosensory environment by extending their 
proboscis and interacting with tastants via sensillum on the labellum. (A inset) Three types of sensilla (S  =  short, I  =  intermediate, L  =  long) each contain 
two or four gustatory receptor neurons (GRNs) from five different cell types (color depicts each class, grouped by modality and receptor expression). 
Mechanosensory neurons are depicted in black. (B) Each GRN has a diverse array of chemosensory receptors (colored to match the GRN that houses 
it). Recently investigated tastants are depicted (gray boxes) with their specific receptors (colored arrows). * indicates “tuning” IRs that generally work 
with the ionotropic co-receptors. (*) indicates receptors that work alongside ionotropic co-receptors for only some of the taste modalities depicted. 
Tastant-receptor pairings that require intracellular pathways are depicted (gray arrows). Created with Biorender.com.
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the detection of pH and anion species show that IRs are largely 
involved with anion detection, whereas the sugar GRs are responsive 
to the change in pH (66). Ascorbic acid (Vitamin C), a distinct but 
related acidic compound, was also found to activate “sweet” GRNs 
through similar mechanisms (65). High concentrations of carboxylic 
acids are aversive (99), and IR7a in “bitter” GRNs is specifically 
required for acetic acid avoidance, without the need for IR co-receptors 
(67). While the cooperative role of OtopLa channels along with these 
receptors remains unclear, these findings underscore the dual 
activation of taste cells by acids through both receptors and 
proton influx.

Alkaline taste

Since pH influences food quality, the ability to detect both basic 
and acidic pH levels would be advantageous. Previous mammalian 
studies on basic pH sensation focused on somatosensation (100), but 
humans show alkaline sensitivity on the tip of the tongue (101) and a 
recent study in rats found that sodium carbonate (Na2CO3) solutions 
activate taste nerves significantly more than Na+ alone. However, 
alkaline taste has not been well described. A recent study in Drosophila 
established the existence of alkaline taste, and identified a novel 
receptor required for the detection of basic solutions (70) (Table 1; 
Figure 1B). Alkaliphile (Alka) is a Cl− channel gated by high pH that 
is necessary for alkaline taste (70). The Alka receptor is expressed in a 
subset of the “bitter” GRNs (~21%), but it is currently unclear what 
other cell types may express this receptor. Regardless, this study in flies 
establishes a novel tastant-receptor interaction for alkaline taste that 
may be relevant to mammals. Interestingly, the Otop1 proton channel 
for sour taste was recently found to be a candidate alkaline receptor in 
vitro (102), indicating a need for future comparative studies on basic 
and acidic pH detection mechanisms.

Umami (amino acid) taste

Protein feeding is coupled with the chemical detection of amino 
acids. Umami taste is a specific savory sensation, usually associated 

with monosodium L-glutamate (MSG), an amino acid often found in 
foods at higher concentrations (103–105). The mammalian GPCR 
complex consisting of T1R1 + T1R3 is referred to as the “umami 
receptor” (45) and has a high sensitivity to glutamate in humans (106). 
In most vertebrates, this receptor is broadly responsive to amino acid 
ligands and amino acids can also activate sugar taste receptors, bitter 
taste receptors, or act through metabotropic glutamate receptors in 
multiple cell types (107–114). This combinatorial coding likely occurs 
in response to individual amino acids in a dose-dependent manner. 
Through in vitro assays, mammalian bitter receptors display dose-
dependent activation by amino acids, however, some inconclusive 
results are attributed to the possibility of endogenous amino acid 
receptors in the cell line used for these experiments (109). In vivo 
studies in Drosophila circumvent these concerns and allow for a 
deeper understanding of the combinatorial coding for amino acid 
taste (Table 1).

Fruit flies require and consume amino acids based on internal state, 
such as mating status or nutritional deficiency (115). The IR co-receptors 
(IR76b and IR25a) are necessary for detecting most of the proteinogenic 
amino acids at various concentrations (68, 69, 116), and the “tuning” 
receptors identified for amino acid sensation to date are IR51b and 
IR94e. IR51b is a bitter cell-specific receptor that detects high 
concentrations of arginine, valine, leucine, tryptophan, isoleucine, 
lysine, and proline (68). IR94e receptors are integral for the detection of 
glutamate in various forms, and this “tuning” receptor is expressed in a 
newly described set of taste cells that induce mild feeding aversion (27, 
69). A thorough description of the combinatorial coding for low 
concentrations (25 mM) of arginine reveals that “sweet” GRNs are 
activated through both sugar GRs (Gr5a, Gr61a, and Gr64f) and IR 
co-receptors (68) (Figure 1B). The overlap between sugar-sensing and 
amino acid-sensing resembles a pattern found in mammals (117).

A feature of the mammalian “umami receptor” is enhancement by 
purine-5′-nucleotides (IMP and GMP) (111, 114, 118), but this feature 
is not known to occur in fruit flies. Additionally, while no 
metabotropic glutamate receptors have been identified in fruit fly 
amino acid taste, the IRs are ancestrally related to ionotropic glutamate 
receptors (36–38, 119), suggesting a conserved use of glutamate 
receptors in chemosensation (107, 113, 120). In Drosophila, another 
intriguing element is that an odorant binding protein (OBP19b) 

TABLE 1 Recently described tastants and their receptors in the Drosophila labellum.

Tastant (s) Receptor(s) Details References

Aristolochic acid: non-canonical bitter Rhodopsins (Rh1, Rh4, Rh7) No light or retinal required. Requires intracellular signaling (59)

Bacterial peptidoglycan: non-

canonical bitter

Peptidoglycan recognition protein 

(PGRP-LB)

Requires nuclear factor-κB (NF-κB)/immune deficiency (IMD)-

dependent signaling

(60)

Metal ions: Cu2+, Ag+, Cd2+, Ni2+, 

Mn2+, Fe2-3+, Zn2+, Co2+

IR25a*, IR76b*, IR7a°, IR47a°, 

Bitter GRs

IR and/or GR complexes required. Receptor depends on the specific ion (61–63)

Carboxylic acids: acetic, lactic, 

glycolic, citric

IR25a*, IR76b*, IR7a, Sugar GRs Receptor complex depends on concentration. Some ligand specificity. 

Unclear if or how receptors work with OtopLa

(64–67)

Amino acids: 20 proteinogenic IR25a*, IR76b*, IR51b°, IR94e°, 

Sugar GRs

Receptor complex depends on concentration. Some ligand specificity (68, 69)

Alkaline solutions: NaOH, Na2CO3 Alkaliphile (Alka) Cl− channel gated by high pH (70)

Fatty acids: hexanoic acid and other 

MCFAs, SCFAs, LCFAs

IR25a*, IR76b*, IR56d°, Sugar 

GRs, Bitter GRs

Receptor complex depends on concentration. Requires intracellular 

signaling (at least MCFA). Mechanisms for MCFA different from others

(71–74)

Receptors with the most consistent evidence are listed. * indicates broadly expressed IR co-receptors, ° indicates narrowly expressed IR “tuning” receptors that pair with the co-receptors. 
IR = Ionotropic Receptor, GR = Gustatory Receptor.
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secreted from nearby cells can bind certain amino acids to impact 
their detection by taste cells (121), but it is unclear how conserved this 
mechanism may be. Despite some differences from the mammalian 
system, the Drosophila model offers a way to study dose-dependent 
encoding of individual or groups of amino acids to better understand 
this canonical yet complex taste modality.

Fatty acid taste

Fatty acids are highly energetic essential nutrients that are 
attractive to both mammals and Drosophila (71, 122–124). Initially, fat 
palatability was thought to be driven by texture and olfaction (125), 
but more recent research has highlighted the importance of gustation 
(126–128). In mice, CD36 is a fatty acid transporter expressed in taste 
buds that contributes to fatty acid preferences (129), and two GPCRs 
(GPR40 and GPR120) appear to function as lingual fat receptors 
(130). Although Drosophila homologs have not been discovered, 
GRNs in the labellum do detect fatty acids (71). Similar to carboxylic 
and amino acids, the cellular and behavioral responses to fatty acids 
in flies depend on concentration.

At low concentrations (~0.1%), hexanoic acid elicits appetitive 
responses in Drosophila, while at high concentrations (~1–2%), it 
prompts aversion (74). Hexanoic acid attraction is driven by “sweet” 
GRNs, requiring both IR56d and Gr64d (72–74, 131, 132). Aversion 
to hexanoic acid is controlled by “bitter” GRNs via three bitter 
receptors: Gr32a, Gr33a, and Gr66a (74) (Table 1). Recent work has 
also demonstrated that the fly gustatory system can distinguish 
between different classes of fatty acids based on chain length (73). 
While all classes of fatty acids require the IR co-receptors (IR25a and 
IR76b) for detection, medium-chain fatty acid (MCFA) taste requires 
“sweet” GRNs and the IR56d receptor, whereas short-chain (SCFA) 
and long-chain (LCFA) fatty acid taste does not (73). These findings 
indicate that IR56d is selective for MCFAs, while the co-receptors may 
function more broadly. However, a recent study questioned the 
involvement of IR25a and IR76b in the labellar response to the MCFA 
hexanoic acid (74). The molecular and cellular underpinnings of 
SCFA/LCFA detection and fatty acid discrimination remain unclear, 
but these complexities reflect a nuanced fatty acid taste encoding 
system that is sensitive to both concentration and subtle variations in 
molecular structure.

MCFA taste also requires intracellular signaling, as flies with a 
mutant norpA, a Drosophila homolog for PLC, have disrupted MCFA 
detection (71) (Figure 1B). Whether or not PLC signaling is necessary 
for SCFA and LCFA sensation is unknown. Furthermore, one study 
showed that the sugar GR, Gr64e, is an essential component of MCFA 
signal transduction, unexpectedly serving as a downstream 
component in the PLC pathway within “sweet” GRNs (133). Notably, 
a recent investigation found that Gr64e mutation did not affect 
electrophysiological responses to the MCFA hexanoic acid (74). 
Despite this discrepancy, activation of a secondary receptor via PLC 
mimics the mammalian fatty acid signaling cascade. Mice lacking PLC 
or TRPM5, a downstream receptor in the PLC cascade, lose their taste 
preference for fatty acids (134). Collectively, these results imply that 
PLC-mediated intracellular mechanisms underpin fatty acid gustation 
in both Drosophila and mammals, despite mammalian research 
primarily focusing on LCFAs which remain attractive at higher 
concentrations (130). Drosophila fatty acid taste emphasizes the 

conserved nature of macronutrient taste encoding and may prove 
valuable for informing future fat perception research to uncover more 
about this non-canonical taste modality that has many 
health implications.

Discussion

Recent advances in gustation research using Drosophila 
melanogaster as a model organism have revealed several unexpected 
ligand-receptor interactions within the taste system that play crucial 
roles in chemosensation and behavior. The discovery of two novel 
receptor signaling types in bitter cells, through non-canonical 
rhodopsin and immune signaling, has revealed unexpected 
transducers for contact chemical cues. Moreover, the fly gustatory 
system contains a markedly complex set of receptors to detect specific 
metals, which may become increasingly relevant in this Anthropocene 
Epoch. The identification of receptors for carboxylic acid anions 
suggests a mechanism for sour taste that extends beyond proton 
detection, while a novel receptor for alkaline solutions highlights the 
role of gustation in discerning a broader pH spectrum. The ability to 
study intact taste cells in awake flies has provided key insights into the 
concentration-dependent nature of ligand detection across multiple 
receptors and cell types for carboxylic, amino, and fatty acids that 
imply combinatorial taste coding mechanisms to specific molecules. 
Future work can apply these insights to continue understanding the 
repertoire of tastant-receptor interactions behind basic, canonical 
tastes and emerging, non-canonical taste modalities.
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